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The sensitivity of the Slusher and Hahn’s nuclear quadrupole double resonance technique is calculated in
general for an arbitrary nuclear spin S of the quadrupole nuclei and for an arbitrary asymmetry parameter
g of the electric field gradient tensor. The nuclear spin S = 5/2 (17O, 25Mg, . . .) is treated in details. The
influence of the cross-relaxation rate between the quadrupole nuclei and the abundant spin system on
the sensitivity of double resonance is discussed. The results of the theoretical analysis are applied in
the analysis of the 1H–17O nuclear quadrupole double resonance spectra in p-toluenesulfonamide and
2-nitrobenzoic acid. The 17O nuclear quadrupole resonance frequencies from a sulfonamide group are
determined for the first time. The proton–oxygen cross-relaxation rates and the proton local frequency
in zero external magnetic field are experimentally determined from the nuclear quadrupole double res-
onance spectra.
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1. Introduction

Nuclear quadrupole double resonance (NQDR), as introduced
by Slusher and Hahn [1], is a highly sensitive technique that
is used for the measurement of low nuclear quadrupole reso-
nance (NQR) frequencies of rare quadrupole nuclei. A high sen-
sitivity is obtained when a quadrupole nucleus has a half
integer nuclear spin. In case of an integer nuclear spin the sen-
sitivity is strongly reduced due to the spin quenching effect [2].
The technique is based on the interaction of the quadrupole nu-
clei with the energy levels quantized in the interaction picture
and the dipolar spin reservoir of an abundant system of nuclei,
usually protons.

The technique presents an alternative to the high-field solid
state NMR measurement of the nuclear quadrupole interactions
in solids. Its advantage is the possibility to study the nuclear quad-
rupole interactions in polycrystalline samples with a high resolu-
tion. It has been mainly applied to 17O at natural abundance [3–
24] and 39K [8,9,16,20,25,26], but may also be applied to 25Mg,
33S, etc.

The NQDR technique and its sensitivity are in Ref. [1] well ana-
lyzed for the nuclear spin S = 3/2. In this paper we calculate the
NQDR sensitivity for an arbitrary half integer nuclear spin S of
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the quadrupolar nuclei and for an arbitrary asymmetry parameter
g of the electric field gradient (EFG) tensor at the position of a
quadrupole nucleus. The cross-relaxation between the two spin
systems is treated phenomenologically. The nuclear spin S = 5/2
is considered in details.

As experimental examples we analyze the 1H–17O NQDR spec-
tra of p-toluenesulfonamide and 2-nitrobenzoic acid.

2. Theory

2.1. Quadrupole nuclei in a strong resonant rf magnetic field:
interaction picture

The nuclear quadrupole Hamiltonian reads as

HQ ¼
e2qQ

4Sð2S� 1Þ 3S2
z � SðSþ 1Þ þ g

2
ðS2
þ þ S2

�Þ
� �

: ð1Þ

Here e2qQ is the quadrupole coupling constant multiplied by the
Planck’s constant h and g is the asymmetry parameter of the elec-
tric-field-gradient (EFG) tensor. The asymmetry parameter g ranges
between 0 and 1.

The eigenstates of the nuclear quadrupole Hamiltonian are in
case of g = 0 the states jS,mi with the well-defined projection m
of the nuclear spin on the principal axis Z of the EFG tensor [27].
The energy Em,

Em ¼
e2qQ ð3m2 � SðSþ 1ÞÞ; ð2Þ
4Sð2S� 1Þ

mailto:janez.seliger@fmf.uni-lj.si
http://www.sciencedirect.com/science/journal/10907807
http://www.elsevier.com/locate/jmr
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is in this case a quadratic function of m. The energies Em and E�m

are equal what results in the double degeneracy of the nuclear
quadrupole energy levels that can be labeled with the positive
magnetic quantum number m. The double degeneracy of the nu-
clear quadrupole energy levels remains also when g differs from
zero. It is the consequence of the time-inversion symmetry of the
quadrupolar Hamiltonian. The energy level that is the continua-
tion of the energy level ‘‘m” at g = 0 is still labeled as ‘‘m”. The
two eigenstates corresponding to the energy level m we label
as jw+mi and jw�mi, where

jwþmi ¼
PS�1=2

k¼0
cm

k jS; S� 2ki

jw�mi ¼
PS�1=2

k¼0
cm

k jS;�Sþ 2ki:
ð3Þ

The expansion coefficients cm
k depend on g, and can be expressed

analytically only for S = 3/2. For a higher nuclear spin they must
be calculated numerically.

The nuclear quadrupole energy levels and the transition fre-
quencies are for S = 3/2 and S = 5/2 shown in Fig. 1. In case of
S = 3/2 there are two doubly degenerated nuclear quadrupole en-
ergy levels labeled as ‘‘3/2” and ‘‘1/2” and a single NQR frequency
m3/2–1/2. In case of S = 5/2 there are three doubly degenerated nucle-
ar quadrupole energy levels labeled as ‘‘5/2”, ‘‘3/2”, and ‘‘1/2” and
three NQR frequencies m5/2–1/2 > m5/2–3/2 P m3/2–1/2.

Suppose we apply in zero static magnetic field an rf magnetic
field with the amplitude ~B1 and with the frequency m close to the
NQR frequency mm-k: m = mm-k � dm. The Hamiltonian can be in this
case expressed as

H ¼ ðm=mm�kÞHQ þ ðdm=mm�kÞHQ � �hcQ
~S~B1 cosð2pmtÞÞ: ð4Þ

Here we completely neglect the dipolar interaction between the
quadrupolar nuclei. The dipolar interaction between the quadrupo-
lar nuclei and protons is at the moment also neglected. We express
the orientation of the rf magnetic field in the principal-axes system
X, Y, and Z of the EFG tensor with the polar angle h and the azi-
muthal angle u. Here h is the angle between the direction of the
rf magnetic field and the principal axis Z and u is the angle between
the projection of the direction of the rf magnetic field on the X–Y
plane and the principal axis X. The scalar product ~S~B1 may be ex-
pressed as:

~S~B1 ¼ B1 nZSZ þ
1
2
ðnþS� þ n�SþÞ

� �
: ð5Þ

Here nz = cosh and n± = sinh exp(±iu).
Further we perform the transformation into the interaction pic-

ture with the operator T ¼ exp � i
�h

m
mm�k

HQ

� �
and keep only the

time-independent terms. In the subspace of the states jw+mi,
jw-mi, jw+ki, and jw-ki we obtain in the interaction picture the fol-
lowing Hamiltonian H0:
Fig. 1. Nuclear quadrupole energy levels and transition frequencies for S = 3/2 and
S = 5/2.
H0 ¼ h

dm=2 0 �a �b�

0 dm=2 �b a

�a �b� �dm=2 0
�b a 0 �dm=2

2
6664

3
7775þ c

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
6664

3
7775: ð6Þ

Here a ¼ m1
2 nZhwþkjSZ jwþmi, b ¼ m1

4 hw�kjnþS� þ n�Sþjwþmi, c ¼ dm
2mm�k

ðEm þ EkÞ, m1 = cQB1/2p, whereas Em and Ek are the energies of the
energy levels m and k, respectively. We call this interaction picture
the quadrupole rotating frame, not because it is a real rotating
frame, but because of its similarity to the rotating frame as used
in NMR.

The Hamiltonian H0 has two doubly degenerated principal val-
ues E+ and E�:

E� ¼ c � h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ bb� þ ðdm=2Þ2

q
: ð7Þ

The frequency splitting Dm of the two energy levels in the quadru-
pole rotating frame is equal to Dm = (E+ � E�)/h. The splitting de-
pends on the orientation of the rf magnetic field with respect to
the principal axes of the EFG tensor and on the resonance offset
dm. It is in resonance (dm = 0) proportional to B1.

The two eigenstates jwþ1 i and jwþ2 i, corresponding to the energy
level with the energy E+, may be in the basis jw+mi, jw�mi, jw+ki, and
jw�ki expressed as

jwþ1 i ¼
ffiffiffiffiffiffiffiffiffiffi
Dmþdm

2Dm

q
1 0 � 2a

Dmþdm � 2b
Dmþdm

� �

jwþ2 i ¼
ffiffiffiffiffiffiffiffiffiffi
Dmþdm

2Dm

q
0 1 � 2b�

Dmþdm
2a

Dmþdm

� � : ð8aÞ

In a similar way we express the two eigenstates, jw�1 i and jw�2 i, cor-
responding to the energy level with the energy E� as:

jw�1 i ¼
ffiffiffiffiffiffiffiffiffiffi
Dmþdm

2Dm

q
2a

Dmþdm
2b

Dmþdm 1 0
� �

jw�2 i ¼
ffiffiffiffiffiffiffiffiffiffi
Dmþdm

2Dm

q
2b�

Dmþdm � 2a
Dmþdm 0 1

� � : ð8bÞ
2.2. Double resonance

The NQDR process is schematically presented in Fig. 2. As the
abundant spin system we consider protons.

The proton spin system is during the polarization phase polar-
ized in a high magnetic field B0. Then the external magnetic field
is adiabatically reduced to zero. The spin temperature TS of the pro-
ton spin system drops to the value TS = (mloc/mL) TL. Here TL is the lat-
tice temperature, mL, mL = cHB0/2p, is the proton Larmor frequency
in the high magnetic field B0 and the proton local frequency mloc

in zero external magnetic field is defined by the equation

m2
loc ¼

4

h2NH

TrH2
DHH=Tr1: ð9Þ

Here NH is the number of protons in the sample and HDHH is the pro-
ton-proton dipole interaction Hamiltonian. The frequency mloc is
Fig. 2. Schematic presentation of a NQDR cycle.
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typically of the order of 10 kHz and mL is of the order of 100 MHz.
The proton spin temperature thus drops for more than three orders
of magnitude. The inverse proton spin temperature b is at the
beginning of the mixing phase equal b = 1/kBTS. During the mixing
phase b decreases towards bL, bL = 1/kBTL, due to the spin–lattice
relaxation as

bðtÞ ¼ bL þ ðb0 � bLÞ expð�t=T1Hð0ÞÞ: ð10Þ

Here T1H(0) is the proton spin–lattice relaxation time in zero exter-
nal magnetic field. A faster decrease of b is observed, when the
quadrupole nuclei are during the mixing phase irradiated by a
phase-modulated resonant rf magnetic field (Fig. 2).

After the time s spent in zero magnetic field, the initial mag-
netic field B0 is adiabatically restored. The proton magnetization
is at the beginning of the detection period proportional to b(s),
where b(s) is the inverse proton spin temperature at the end of
the mixing period. The resonant rf irradiation of the quadrupole
nuclei thus decreases b(s) as well as the proton signal S measured
at the beginning of the detection period. The dependence of the
proton NMR signal S(m) on the frequency m of the rf magnetic field
exhibits dips at the NQR frequencies (m = mm–n). In the continuation
we calculate the intensities of these dips.

At the beginning of the mixing phase, when the rf magnetic
field is switched on, the flip-flop transitions occur between the en-
ergy levels of the quadrupole nuclei in the quadrupole rotating
frame and between the proton dipolar energy levels. These transi-
tions tend to equalize the spin temperature b of the proton spin
system and the spin temperature of the quadrupole spin system
in the quadrupole rotating frame:

Nþ=N� ! expð�bðEþ � E�ÞÞ ffi 1� bðEþ � E�Þ: ð11Þ

Here N+ and N� are the populations of the energy levels with the
energies E+ and E�, respectively. The sum N0Q ¼ Nþ þ N� is in the
high-temperature approximation, that is used in this analysis, equal
N0Q ¼ 2NQ=ðSþ 1=2Þ with NQ being the number of equivalent quad-
rupole nuclei in the sample. In the further analysis we first assume
that the two spin temperatures equalize during the time s* between
two repetitive 180� phase shifts of the rf magnetic field. In addition
we assume that the number of the quadrupole nuclei NQ is small as
compared to the number of protons NH. We are namely mainly
interested in the detection of nuclei with low natural abundance
and low NQR frequencies, as for example 17O and 33S.

The populations of the two energy levels in the quadrupole
rotating frame are at the moment, before the 180� phase shift
occurs, equal Nþ ¼ ðN0Q=2Þð1� bhDv=2Þ and N� ¼ ðN0Q=2Þ
ð1þ bhDv=2Þ. Here b is the inverse spin temperature of the proton
spin system at that moment. After the 180� phase shift of the rf
magnetic field the Hamiltonian H0 and its eigenstates change. The
new eigenstates can be obtained from Expressions (8a and 8b) by
the substitution a ? �a and b ? �b. The probabilities P+ and P�
of finding a quadrupole nucleus on the energy levels with the ener-
gies E+ and E�, respectively, are before the 180� phase shift occurs
(t = t�) equal: P+(t�) = (1 � bhDv/2)/2 and P�(t�) = (1+bhDv/2)/2.
Immediately after the phase shift (t = t+) the probabilities change.
They are equal:

PþðtþÞ ¼ KPþðt�Þ þ ð1� KÞP�ðt�Þ ¼ 1
2 1þ 1

2 ð1� 2KÞbhDm
� �

P�ðtþÞ ¼ KP�ðt�Þ þ ð1� KÞPþðt�Þ ¼ 1
2 1� 1

2 ð1� 2KÞbhDm
� � ð12Þ

Here K = (dm/Dm)2. In resonance (d m = 0, K = 0) we obtain the popu-
lation inversion:P+(t+) = P�(t�) and P�(t+) = P+(t�). In an off-resonant
quadrupole rotating frame (dm 6¼ 0) the probabilities change less.

After the 180� phase shift the simultaneous upwards transitions
in the proton dipolar system and downwards transitions in the
quadrupole rotating frame equalize the spin temperatures of the
two spin systems. Assuming, that the proton spin temperature
negligibly changes between two repetitive 180� phase shifts, we
may express the number DN of these transitions as
DN ¼ N0Q ½P�ðt�Þ � P�ðtþÞ� ¼ N0Q ð1� KÞbhDm=2. The change of the
energy of the proton spin system DE is equal
DE ¼ hDmDN ¼ 2N0Q bh2ða2 þ bb�Þ.

The energy change DE of the proton spin system is independent
on the resonance offset dm as far as the spin temperatures of the
two spin systems equalize during the time s* between two repeti-
tive 180� phase shifts. At a large dm the cross-relaxation time be-
comes longer than s* and the two spin temperatures do not
equalize between two repetitive 180� phase shifts. That results in
a smaller energy change DE.

Knowing DE we may write the rate equation for the inverse pro-
ton spin temperature b. The energy E of the proton spin system in
zero static magnetic field may be expressed as E ¼ �bNHh2m2

loc=4.
The rate equation for b, db/ds = �Wb, is derived from the equation
dE/dt = DE/s*. Here

W ¼Wðh;uÞ ¼
8N0Q ða2 þ bb�Þ

NHm2
locs�

¼ 1
2s�

N0Q
NH

m1

mloc

	 
2

½4hwþkjnzSzjwþmi
2

þ jhw�kjnþS� þ n�Sþjwþmij
2� ð13Þ

In a single crystal the double resonance relaxation rate W depends
on the orientation of the rf magnetic field in the eigenframe of the
EFG tensor. In a polycrystalline sample, which is usually used in a
double resonance experiment, there is a distribution of the double
resonance relaxation rates. In addition the proton spin–lattice
relaxation in zero magnetic field must be considered as an indepen-
dent process. The proton NMR signal S at the beginning of the detec-
tion period is in this case equal

S ¼ 1
4p

S0 expð�s=T1Hð0ÞÞ
Z 2p

0
du
Z p

0
expð�Wðh;uÞsÞ

� sin hdh: ð14Þ

If we limit ourselves to the case of a weak double resonance sig-
nal (W(h,u)s < 1), we may expand exp(�W(h,u)s) in Taylor series
and keep only the two largest terms. We obtain

S ffi S0 expð�s=T1Hð0ÞÞð1�WsÞ; ð15Þ

where,

W ¼ 1
4p

Z 2p

0
du

Z p

0
Wðh;uÞ sin hdh

¼ 1
3s�

N0Q
NH

m1

mloc

	 
2

Rm�kðgÞ: ð16Þ

The double resonance signal DS(s),

DSðsÞ ffi S0 expð�s=T1Hð0ÞÞ � S0 expð�s=T1Hð0ÞÞð1�WsÞ; ð17Þ

is equal to the difference between the proton NMR signal at the
beginning of the detection phase with no rf magnetic field applied
and the proton NMR signal at the beginning of the detection
phase with the rf magnetic field applied. It is in the limit of low
W , WT1Hð0Þ � 1, maximum at s = T1H(0), when DSðT1Hð0ÞÞ ¼
S0WT1Hð0Þ=e.

The term Rm–k(g),

Rm�kðgÞ ¼ 2hwþkjSzjwþmi
2 þ hw�kjSþjwþmi

2 þ hw�kjS�jwþmi
2
; ð18Þ

in general depends on the nuclear spin S, on the NQR transition
(m � k) and on the asymmetry parameter g of the EFG tensor. It
can be easily calculated [26] for S = 3/2, where R3/2–1/2(g) = 3 inde-
pendent on g. Numerically calculated values of Rm–k(g) are for
S = 5/2 presented in Table 1. The term Rm–k(g) is at the low values



Table 1
The values of Rm–k(g) for S = 5/2

Transitionng 0.0 0.2 0.4 0.6 0.8 1.0

3/2–1/2 8 7.66 6.92 6.37 5.65 5.31
5/2–3/2 5 4.98 4.94 4.96 5.09 5.30
5/2–1/2 0 0.05 0.16 0.26 0.32 0.27

Fig. 3. Structural formulas of p-toluenesulfonamide (a) and 2-nitrobenzoic acid (b).
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of g the largest for the lowest frequency 3/2–1/2 transition and
nearly zero for the highest frequency 5/2–1/2 transition. Thus the
double resonance signal at m = m3/2–1/2 is the strongest whereas the
double resonance signal at the frequency m = m5/2–1/2 is often not ob-
served. At a large value of g the intensities of the double resonance
signals at m = m3/2–1/2 and m = m5/2–3/2 become nearly equal, but the
intensity of the double resonance signal at m = m5/2–1/2 is still about
20 times lower.

2.3. The cross-relaxation limit

Until now we assumed that the spin temperature of the quadru-
pole spin system in the quadrupole rotating frame and the spin
temperature of the proton spin system equalize during the time
s* between two repetitive phase shifts of the rf magnetic field. If
this is not the case, the phase shift produces a smaller change of
the spin temperature of the quadrupole spin system in the quadru-
pole rotating frame, resulting in a decrease of the double resonance
signal. We define the cross-relaxation rate WCR as the rate at which
the spin temperature of the quadrupole spin system in the quadru-
pole rotating frame approaches the spin temperature of the proton
spin system. It is of the order of WCR 	 l0rcH cQ/4pr3, where r is
the shortest distance between a quadrupole nucleus and the sur-
rounding protons. Here we do not calculate the cross-relaxation
rate WCR, but we model the cross-relaxation in the following
way. We assume that there is a single cross-relaxation rate inde-
pendent on the orientation of the rf magnetic field in the eigen-
frame of the EFG tensor. As before, we suppose that N0Q � NH.
For the sake of simplicity we consider a resonant rf magnetic field
(dm = 0).

After a few phase shifts of the rf magnetic field at the beginning
of the mixing period a quasi equilibrium is reached and the inverse
spin temperature b* of the quadrupole spin system undergoes the
following time variation. Let’s denote the inverse spin temperature
of the quadrupole spin system at the moment before the phase
shift occurs as b0 and the inverse spin temperature of the proton
spin system as b. Immediately after the phase shift the inverse spin
temperature of the quadrupole spin system changes to –b0. In the
time between the phase shifts b* varies as

b�ðtÞ ¼ b� ðbþ b0Þ expð�WCRtÞ: ð19Þ

In the quasi equilibrium situation we have b*(s*) ffi b0, what gives

b0 ¼ bð1� expð�WCRs�ÞÞ=ð1þ expð�WCRs�ÞÞ: ð20Þ

The number DN of simultaneous upward transition in the proton
spin system and downward transitions in the quadrupole spin sys-
tem between two repetitive phase shifts is equal DN ¼ N0Q hDmb0=2.
Inserting this expression into Expression (12) and performing the
next steps we obtain W as

W ¼ 1
3s�

1� expð�WCRs�Þ
1þ expð�WCRs�Þ

N0Q
NH

m1

mloc

	 
2

Rm�kðgÞ: ð21Þ

This expression reduces to Expression (16) when WCRs*
 1. On the
other hand in the cross-relaxation limit, when WCRs*� 1, we obtain

W ¼WCR

6
N0Q
NH

m1

mloc

	 
2

Rm�kðgÞ: ð22Þ
The cross-relaxation rate WCR may be assumed approximately con-
stant when the frequency splitting Dm of the energy levels in the
quadrupole rotating frame is smaller or comparable to mloc. At a lar-
ger value of Dm, obtained in an off-resonant situation or at a large
value of B1, WCR strongly decreases.

3. Experimental results and discussion

We apply the above theoretical results to the analysis of the
1H–17O NQDR spectra of p-toluenesulfonamide and 2-nitrobenzoic
acid. The structural formulas of the molecules are shown in Fig. 3.

The details of the experiment are as follows. A home made NMR
spectrometer operating at mL = 32 MHz is used to measure the pro-
ton NMR signal. The sample is moving between two magnets using
pneumatic post. In the first magnet the proton spin system is
polarized in B0 � 0.75 T during the polarization phase (Fig. 1).
The proton NMR signal at the end of a magnetic field cycle is mea-
sured in the same magnet. In the second magnet the external mag-
netic field is compensated to B < 50 lT. The transfer time between
the two magnets is 0.1 s. A 50 W broadband power transmitter
connected to a tuned circuit consisting of a coil and a computer
controlled capacity bank is used for the rf irradiation of the sample
during the mixing phase. Signal averaging was used to improve the
signal-to-noise ratio.

3.1. p-Toluenesulfonamide

The experiment was performed under the following experimen-
tal conditions. The temperature of the sample was T = �70 �C. The
polarization time in B0 = 0.75 T was 1 min. The sample was left in
the second magnet for s = 1 s. During this time we applied an rf
magnetic field with the frequency m. The time s* between two
repetitive 180� phase shifts of the rf magnetic field was equal
s* = 0.3 ms. The frequency range between 0.5 MHz and 4 MHz
was scanned in steps of 20 kHz.

The NQDR spectrum of p-toluenesulfonamide in the frequency
range between 0.5 MHz and 4 MHz is shown in Fig. 4. Three strong
lines are observed around 3450 kHz, 2460 kHz, and 1000 kHz. Fur-
ther investigations with the two-frequency irradiation technique
in nonzero magnetic field [28] show that these lines correspond
to 14N. 14N has a spin S = 1 and thus three NQR frequencies m+, m�
and m0 = m+ � m�. In the present case they are equal m+ = 3414 kHz,
m� = 2433 kHz and m0 = m+ � m� = 981 kHz. The 14N quadrupole cou-
pling constant is e2qQ/h = 3898 kHz and the asymmetry parameter
is g = 0.503. 14N is not a good candidate for the Slusher and Hahn’s
NQDR technique because of spin quenching [2]. The 1H–14N NQDR
lines as observed in the present NQDR spectrum (Fig. 4.) are also
shifted towards higher frequencies for approximately 30 kHz. This
is the result of the solid-effect contribution to the NQDR spectrum
of 14N [29]. The 1H–14N NQDR lines do not change significantly
when the time s* between two repetitive phase shifts is changed.
They are observed also when a non modulated rf magnetic field
is applied.

The two weaker lines at 2010 and 2660 kHz are observed only
when the phase-modulated rf magnetic field is applied. The fre-



Fig. 4. NQDR spectrum of p-toluenesulfonamide.
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quencies 2010 kHz and 2660 kHz seem to be compatible with the
observed oxygen NQR frequencies in case of a S–O bond [5]. The
17O NQR frequencies are thus m3/2–1/2 = 2010 kHz and m5/2–3/2 =
2660 kHz. The 20 times weaker NQDR line at m5/2–1/2 = 4670 kHz
has not been observed. The two oxygen positions in a molecule
are within the experimental resolution equivalent. The 17O quadru-
pole coupling constant and asymmetry parameter are e2qQ/
h = 9550 kHz and g = 0.676.

In order to investigate the double resonance dynamics and the
sensitivity of the NQDR technique, we measured the NQDR signals
of 17O at two modulation times s* of the rf magnetic field:
s* = 0.3 ms and s* = 3 ms. The parameters of a magnetic field cycle
and the amplitude of the rf magnetic field are kept unchanged. The
results are presented in Fig. 5. Here S0 is the proton NMR signal ob-
served with no rf irradiation and S is the proton NMR signal ob-
served when the rf irradiation at the frequency m is applied. At
m = 2010 kHz the proton NMR signal drops only by approximately
30% when s* is changed from s* = 0.3 ms to s* = 3 ms. The signal
at s* = 0.3 ms is thus measured almost in the cross-relaxation limit.
A similar situation occurs at m = 2660 kHz. Using Eq. (21) we may
calculate the cross-relaxation rate WCR for the two NQDR lines.
The results are as follows. For the NQDR line at m = 2660 kHz we
obtain WCR = 800 s�1 whereas for the NQDR line at m = 2010 kHz
we obtain WCR = 1100 s�1.

The intensity of a NQDR liner strongly depends on the ampli-
tude B1 of the rf magnetic field. In order to check the consistency
of the assignment of the NQDR lines we measured the amplitude
B1 that was used at the NQDR measurement. The amplitude B1 of
Fig. 5. The 1H–17O NQDR signals as measured at two values of the phase
modulation time s*: s* = 3 ms (open circles) and s* = 0.3 ms (full circles).
the rf magnetic field with the frequency m is measured in the fol-
lowing way. The magnetic field cycling is done between the high
magnetic field B0 and a low magnetic field B, where the proton Lar-
mor frequency is mL = cHB/2p. During the stay in the low magnetic
field we apply a short pulse of the rf magnetic field. The length of
the pulse (2 ms in our case) is longer than the proton T2 and shorter
than the proton T1. After the pulse is switched on the proton mag-
netization projects first on the direction of the effective magnetic
field in the rotating frame, that forms an angle h, h = arctg(m1H/
(mL � m)), with the direction of the static magnetic field. Here
m1H = cHB1/4p. After the switch-off of the rf magnetic field the pro-
ton magnetization projects back on the direction of the static mag-
netic field. The proton magnetization M after the pulse is related to
the proton magnetization M0 at the moment before the pulse is ap-
plied as

M ¼ M0
ðmL � mÞ2

ðmL � mÞ2 þ m2
1H

: ð23Þ

The proton magnetization as well as the proton NMR signal S at the
end of the magnetic field cycle drop to zero when mL = m and to one-
half when mL = m ± m1H. The mL-dependence of the proton NMR signal
S thus allows us to determine the frequency m1H. The amplitude of
the rf magnetic field is then calculated as B1 = 4pm1H/cH.

The measurement at the frequency m = 2010 kHz is presented in
Fig. 6. The width of the dip at the half depth is equal DmL = 180 kHz,
corresponding to m1H = 90 kHz and B1 = 4.2 mT. The oxygen fre-
quency m1 = cOB1/2p is equal m1 = 24 kHz. In a similar manner we
obtained at 2660 kHz B1 = 4.5 mT and m1 = 26 kHz.

Eq. (21) can further be used to calculate the proton local fre-
quency mloc from each of the three lines. From both NQDR lines
we obtain the same value of mloc, mloc = 12 kHz. The two equal val-
ues of mloc support the assignment of the NQDR lines we made. In
order to make this point more clear we estimated (Eq. (10)) the
intramolecular contribution to mloc. A detailed crystal structure of
the compound with known proton positions is necessary to obtain
a precise value. In the calculation we used the following shortest
H–H distances: 1.61 Å (�NH2 group), 2.38 Å (ring) and 1.63 Å
(rotating –CH3 group). As the result we obtained mloc = 14 kHz. This
result agrees well with the experimentally obtained value
mloc = 12 kHz.

We also reduced the output power of the transmitter and mea-
sured the dependence of the NQDR signal S0–S on B1. We used the
shorter modulation time s* = 0.3 ms. At both NQR frequencies we
obtained the quadratic dependence, S0 � S / B2

1, as expected after
Eq. (21) when the NQDR signal is weak. The high-power limit,
Fig. 6. Measurement of the amplitude B1 of the rf magnetic field. See details in text.
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when the large value of m1 as compared to mloc reduces the cross-
relaxation rate, is at B1 = 4.5 mT not yet observed.

3.2. 2-Nitrobenzoic acid

In solid 2-nitrobenzoic acid the molecules form hydrogen
bonded dimers. The proton–oxygen interaction for the oxygens
participating in the O–H. . .O hydrogen bonds is stronger than the
proton–oxygen interaction in p-toluenesulfonamide. A higher
cross-relaxation rate is thus expected. The NQR frequencies of
17O participating in the O–H. . .O hydrogen bonds are known from
a previous study [23]. In addition there is a nitro group in the mol-
ecule with the much weaker proton–oxygen interaction.

The experiment was performed at T = �70 �C. The proton polar-
ization time was 60 s and the duration of the mixing period was
s = 1 s. The amplitude of the rf magnetic field was in the whole fre-
quency range approximately 4 mT. The frequency dependence of
the proton NMR signal S as measured at two modulation times,
s* = 0.3 ms and s* = 3ms, divided by the proton NMR signal S0, as
measured with no rf irradiation, is presented in Fig. 7. The NQDR
dips are observed around 1.2 MHz, 2.2 MHz, 2.5 MHz and
3.7 MHz. The 17O NQR frequencies and the corresponding oxygen
positions are labeled on the frequency scale. Two NQR frequencies,
1160 kHz and 1240 kHz, correspond to the 3/2–1/2 NQR transition
at the 17O–H and 17O. . .H positions, respectively. The NQR frequen-
cies 2210 kHz and 2300 kHz correspond to the 5/2–3/2 NQR tran-
sition at the 17O–H and 17O. . .H positions, respectively. The NQR
frequencies from the distinct oxygen positions are so close because
of the concerted motion of protons in the two hydrogen bonds con-
necting two molecules in a centrosymmetric dimer [23]. The NQDR
lines from the 17O–H. . .O oxygen position are broad due to the
strong proton–oxygen dipolar interaction. The two somewhat
weaker lines at 2510 kHz and 3730 kHz belong to the nitro group.
The two oxygen positions in a nitro group are within the experi-
mental resolution equivalent. At these positions the 17O quadru-
pole coupling constant is e2qQ/h = 13,080 kHz and the asymmetry
parameter g is g = 0.543. These values agree with the previously
determined values in compounds containing nitro groups [5,6,24].

The sensitivity of the NQDR technique is again limited by the
cross-relaxation. For 17O from the nitro group the cross-relaxation
rate is about 1200 s�1. For the 17O–H oxygen position the cross-
relaxation rate is higher. The peak vale at 1150 kHz is 2300 s�1,
Fig. 7. NQDR spectrum of 2-nitrobenzoic acid as measured at s* = 3 ms (open
circles) and s* = 0.3 ms (full circles).
but this is lower than the real cross-relaxation rate. The lines are
broad and structured and the off-resonance contribution to the
NQDR line intensity with a lower cross-relaxation rate is impor-
tant. The lines from the 17O. . .H oxygen positions overlap with
the lines from the 17O–H oxygen positions. An independent deter-
mination of the cross-relaxation rate for the 17O. . .H oxygen posi-
tion is thus not possible. The proton local frequency as calculated
from the intensities of the two narrow 17O NQDR lines from the ni-
tro groups are equal to mloc = 17 kHz.

4. Conclusions

The sensitivity of the Slusher and Hahn’s NQDR technique is cal-
culated in general for an arbitrary nuclear spin S of the quadrupole
nuclei and for an arbitrary asymmetry parameter g of the EFG ten-
sor. The case of S = 5/2 (17O, 25Mg, 85Rb. . .) is treated in details. It
is shown that the intensity of the NQDR line corresponding to
m = m3/2–1/2 is generally stronger than the intensity of the NQDR line
corresponding to m = m5/2–3/2. The intensity of the highest frequency
NQDR line at m = m5/2–1/2 is zero at g = 0 and reaches about 5% of the
intensities of the other two NQDR lines at g = 1.

The cross-relaxation between the quadrupole spin system in
the quadrupole rotating frame and the dipolar proton spin system
and its influence on the sensitivity of the NQDR technique is trea-
ted phenomenologically. The influence of the cross-relaxation rate
on the intensities of the NQDR lines is calculated.

The results of the theoretical calculation are used in the analysis
of the NQDR spectrum of p-toluenesulfonamide and 2-nitrobenzoic
acid.

In p-toluenesulfonamide we observe besides the three strong
1H–14N NQDR lines at 3414 kHz, 2433 kHz, and 981 kHz also two
weaker NQDR lines at 2010 kHz and 2660 kHz. The weaker lines
are assigned to 17O. The 17O quadrupole coupling constant is
e2qQ/h = 9550 kHz and the asymmetry parameter g is g = 0.676.
The intensities of the 1H–17O NQDR lines are measured at two
modulation rates of the rf magnetic field and the cross-relaxation
rate WCR is determined. It is equal 1100 s�1 for the 3/2–1/2 transi-
tion and 800 s�1 for the 5/2–3/2 transition. The amplitude of the rf
magnetic field is measured and the proton local frequency in zero
external magnetic field is determined from the intensities of the
NQDR lines as being equal mloc = 12 kHz. The intramolecular contri-
bution to mloc is estimated and compared to the experimental value.
The dependence of the NQDR signal intensities on the amplitude B1

of the rf magnetic field was measured. For B1 6 4.5 mT the high-
power limit, when large m1, m1 = cOB1/2p, as compared to mloc re-
duces the cross-relaxation rate, has not been observed.

In the NQDR spectrum of 2-nitrobenzoic acid we observed three
oxygen positions: the two positions 17O–H and 17O. . .H in the O–
H. . .O intermolecular hydrogen bonds and two equal oxygen posi-
tions in the nitro groups. The 17O NQR frequencies from the nitro
groups, m3/2–1/2 = 2510 kHz and m5/2–3/2 = 3730 kHz, are determined
by the present study. The 17O quadrupole coupling constant is
e2qQ/h = 13080 kHz and the asymmetry parameter g is g = 0.543.

The proton–oxygen cross-relaxation rate for the 17O positions in
the nitro groups has been determined as being equal
WCR = 1200 s�1. For the oxygen positions in the hydrogen bonds
the cross-relaxation rates cannot be precisely determined due to
large dipolar linewidths and partial overlap of the NQDR lines.
The proton local frequency in zero external magnetic field, as
determined from the intensities of the NQDR lines, is equal
mloc = 17 kHz.
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[29] J. Seliger, V. Žagar, Measurement of the 14N nuclear quadrupole resonance
frequencies by the solid effect, J. Magn. Reson. 193 (2008) 54–62.


	Sensitivity of nuclear-quadrupole double-resonance detection of half-integer spin nuclei
	Introduction
	Theory
	Quadrupole nuclei in a strong resonant rf magnetic field: interaction picture
	Double resonance
	The cross-relaxation limit

	Experimental results and discussion
	p-Toluenesulfonamide
	2-Nitrobenzoic acid

	Conclusions
	References


